
SOME DESIGN CONSTRAINTS REQUIRED
COMPONENTS: THE INCORPORATION

FOR THE ASSEMBLY OF SOFTWARE
OF ATOMIC ABSTRACT TYPES

INTO GENERICALLY STRUCTURED ABSTRACT TYPES

Charles S. Johnson

ABSTRACT

It is nearly axiomatic, that to take the greatest advantage
of the useful features available in a development system, and to
avoid the negative interactions of those features, requires the
exercise of a design methodology which constrains their use. A
major design support feature of the Ada language is abstraction:
for data, functions, processes, resources and system elements in
general. Atomic abstract types can be created in packages
defining those private types and all of the overloaded
operators, functions and hidden data required for their use in
an application. Generically structured abstract types can be
created in generic packages defining those structured private
types (i.e. lists, trees), as buildups from the user-defined
data types which are input as parameters. A study is made of
the design constraints required for software incorporating
either atomic or generically structured abstract types, if the
integration of software components based on them is to be
subsequently performed. The impact of these techniques on the
reusability of software and the creation of project-specific
software support environments is also discussed.

INTRODUCTION

The reusability of Ada software developed in support
environments will be wholly dependent upon the quality of those
environments. The ability of programmers that are relatively
inexperienced in Ada to generate reusable software will be
enhanced by an environment rich in already reusable software
components, which act as models f o r good design. In an analogy
to a factory, components which are tooled to fit can be easily
assembled. Atomic abstract types define objects which represent
the discrete phenomena that are the subjects of the system
development. Generically structured abstract types organize the
objects of the system in a manner representing the relationships
between those objects. If atomic and generically structured
abstract types are defined according to some general design
goals and constraints, then the subsequent assembly of these
software components is made considerably easier.

BRIEF BACKGROUND

Kennedy Space Center/ Engineering Development/ Digital
Electronics Engineering Division is in the process of
prototyping distributed systems supporting I & T applications,
particularly the Space Station Operations Language (SSOL)
System, which is the I & T subset of the User Interface Language

E.l.l.l

(UIL) for the Space Station. The discussions in this paper were
developed from the results of systems designed and developed in
Ada to demonstrate the general feasibility of creating
software support environments which maximized the reusability of
software components. The Ada environment used was that of VAX
Ada under VAX/VMS.

OBJECT DEFINITION IN ADA

The design and development of software components that meet
the needs of the user community can be viewed largely as an
effort to define and refine the definition of abstract objects
and their associated operations in computer systems. The
definition of objects in these systems is akin to a simulation
effort. There is a direct correlation between the effectiveness
of programs and the fidelity with which objects in those
programs simulate the behavior of the external phenomena they
are intended to represent. For example, an element in a
scheduler queue, representing a process awaiting execution, must
reflect the correct state of the process (priority, blocked for
I / O , etc.) for the scheduler to function properly. The element
must be distinguishable from other elements and not lose
identity or integrity during operations.

As in simulation efforts, the goals and objectives for
defining an object in a system should be specified at the
outset. The system functional requirements should drive the
process, while the scope of the system concept constrains
development to areas that are productive.

SIMPLE TYPES

An object is characterized by it's attributes and the
operations which mediate it's interactions with other objects in
the environment. In the Ada language, the process of object
definition begins with selection of base type or the creation
of a composite type.

Objects whose behavior is simple enough to be modeled by a
numeric value, can be represented by subtypes or derived types,
of numeric or discrete types. The subtype definitions can
include range constraints, and in the case of non-discrete
numeric types (UNIVERSAL-REAL, UNIVERSAL-FIXED) , they can
include limits of precision for the representation. Declared
objects of subtypes are, however, compatible with their base
type and subtypes of the base type, which can allow erroneous
combinations by operations allowable in the base type (adding
MINUTES to HOURS, for example) .

If the allowable operations of these base types are
unsuitable, they can be restricted by the use of a derived type,
which inherits the operations of the base type, but only for
declared objects of the derived type (incompatible with the base
type). This can yield dimensional errors, however, for
multiplies and divides of objects of the same type (FT * FT =
FT, instead of FT squared). In these cases subtypes and derived

E.1.1.2

types are too simple in behavior to correctly represent the
objects in applications, and composite types must be used. [l]

COMPOSITE TYPES

Objects which are characterized by collections Of
components or attributes are defined in Ada by the use of
composite types: arrays and records or by access types
which designate composite types. Objects which are collections
of compatible components are represented by arrays, whereas
objects which have various kinds of attributes are represented
by records or access types designating records. Objects with
attributes, and which have complex interactions with other
objects in the system, would seem to be the more useful,
although these are the most complex to define.

Objects with attributes interact with each other by the
means of those attributes, under the control of the allowable
operations of the objects. These interactions can produce
modifications and deletions of the objects or creation of new
and different kinds of objects. In Ada, the operations are
defined as subprograms (functions and procedures) with
parameters of the object type or subtype.

The operations which correspond to functions can be
overloaded onto the set of computer math symbols for the given
types. A function producing a scalar dot product from two input
vectors could be given the name for instance. At the same
time, a function producing a vector cross product from two
vectors, could also be named The compiler would resolve
these two operations from the type of the returned object. The
compiler cannot, however, resolve these operations when the type
of return is unknown. Vector products defined in this way could
not then be embedded in longer equations, where they would
generate intermediate results of indeterminate type.

DIFFERENTIATION

There are different levels of definition f o r a
system, it's objects and operations. Definition of the gross
structure of a system can typically be generated, in a fairly
simple manner, by the object-oriented or functional
decomposition methods. Definition of the fine structure of
the system involves different methods, which produce results of
greater complexity. One proposed second-stage method is
differentiation.

If the definition of an object is found to be too amorphous
to yield the correct behavior, differentiation can produce
separate and more distinct types of object. The differentiated
types will tend to be closely coupled and capable of interacting
with the same operations that the undifferentiated type allowed
for interactions of objects of that type. Where they differ in
behavior is that area of operations or attributes that required
the split. This type of tightly coupled interaction between
different types is produced automatically in subtypes of the
same base type, through inheritance. Subtypes, however, are very

E.1.1.3

tightly coupled, and can only differ from each other in terms of
ranges (numeric or discrete subtypes), numbers of components
(constrained array subtypes) or discriminant values (constrained
record subtypes).

If the differentiation is more extensive, requiring objects
of differently structured base types, then all of the allowed
interactions between the objects must be defined more
laboriously. The rewards of this diligence, which are unique to
Ada, are the isolation of system complexity to a package
defining all the closely coupled interactions, while the
programming using these types and operators can proceed at a
higher level.

OBJECT LIFE CYCLE

Definition of a system down to the fine structure produces
a definition that is no longer intuitive, and requires some non-
intuitive method for it's verification. The life 'cycle of an
object may prove to be useful in providing a path to follow, in
the analysis of complex objects.

All objects have their own life cycle, however brief, in
the system environment. They are created and deleted by an
operation or system event, either explicitly or implicitly.
During their life they interact with other system objects, with
results dictated by the appropriate operations.

The verification of the results of object definition can be
performed by a "walkthroughll of the object life cycle. During
this process, the defined attributes and operations of the
object can be evaluated in the light of the events it
experiences: creation, interactions and demise. If, under
these circumstances and within the scope of the requirements,
the abstract object behaves similarly to the phenomena which it
is intended to represent, then the object with it's attributes
and operations can be expected to reliably support the
development of applications concerning that phenomena.

The Ada language features which directly support the
definition of objects are packages and private types. Packages
contain the definition of the object and allowable operations,
which are visible, and the implementation, which is hidden.
Private types further close the window of visibility, allowing
only higher-level or interface attributes of the object
definition to be visible

TWO CLASSES OF ABSTRACT TYPES

For the purposes of the assembly of software components,
there appear to be two broad classes of private types. The types
which support the definition of objects as discussed above are
called, only for the purpose of distinction, atomic abstract
types. These types represent the discrete phenomena which are
the subjects of system development, and are defined in
packages as private types. They have the indivisible property of
atoms, and can be incorporated into the second class of types:
the generically structured abstract types.

E.1.1.4

Generically structured abstract types are managed by
generic software components (packages or subprograms), and are
built-up from application-defined types which are contained as
components of the generic structure. These structured abstract
types organize the objects of the system in a manner
representing the relationships between objects, and they shall
be discussed first.

GENERICALLY STRUCTURED ABSTRACT TYPES

These structures, built-up from application-defined
atomic abstract types and managed by generic packages, support
the basic organization of the elements of the system. The
organization of objects in a structure is a representation of
the relationships between those objects, which can be either
static or dynamic in nature.

The specification of a generic package is parameter driven.
The generic formal parameters of a generic package are the basis
and controlling factor in the reusability of the package. The
use of generic software has implications, however, for the
design of atomic abstract types which are later to be used in an
‘instantiation of that software. The benefits of reusability can
only be fully realized if the design of atomic abstract types
follows distinct lines.

Taking an example of a generic sorting routine, it can
readily be seen that the reusability of the routine is dependent
upon the initial typing of the generic formal parameters and the
matching rule for generic formal parameters. If the parameter is
typed as simply private, then the maximum reusability is
achieved, because it will match nearly everything (except
discriminant or limited private types). However, if the
parameter is typed as a real (digits <>) or integer (range <>),
the operations that are consistent with those types will be
available to the internals of the generic, but at the expense of
only allowing those types as parameters.

It should be noted here, that although a generic formal
parameter of the limited private type would extend the
generality of the generic software component, it is not useful
due to the lack of both assignment and compare for equality
within the generic. Without assignment, components of the
structure cannot be set, or initialized to any value.

The concept of generic programming turns private types and
visibility inside out. In the case of a generic package, the
structure of a type passed as a formal parameter is not visible
to the package which manipulates it.

In the support of generic structures, typically all that is
needed is the assignment function @@:=I@ , the compare for equality
function It=)I , and an ordering function @I>@@. The assignment and
compare functions are available with type private parameters,
and the ordering function I@>@@ can be passed as another formal
parameter. With no other details or operations, structures like
lists, queues, indexes, and hierarchical tree structures
containing objects of the generic formal parameter type can be
defined and maintained by the package.

E . 1 . 1 . 5

ATOMIC ABSTRACT TYPES

The atomic abstract types are the components which fit into
the generically-structured abstract types, during the assembly
of software components. As such they must be crafted to fit
easily into the generic structure.

As has been noted, generic formal parameters of the maximum
range of applicability are those of the private type. The
problem then is to design atomic abstract types that match the
simple model of the private type: assignability and
comparability.

Discriminant types, although very useful on their own for
the development of objects with constraining attributes, are
fairly disfficut to use in conjunction with generic software.
Very quickly it is found that, to match a discriminant type with
a generic formal parameter, the types for each individual
constraint must first be passed as generic formal parameters.
Then the discriminant type must be passed with it's
constraints. Unconstrained types are not allowed. Generic
formal parameters of this combination should be fairly difficult
to match with any type other than the type initially matched,
making for extremely reduced reusability.

Access types, which are the foundation of the dynamic
structure of generically structured abstract types, are of
little use in constructing atomic abstract types. They
perform the assignability function more or less according to the
simple model of private types, however they do not create a copy
of the designated object (object pointed to), but instead copy
the access object value (pointer address) onto the new object.
This creates a shared object, with a certain loss of object
identity, and could cause integrity problems inside the generic
structure which incorporates the access object as a component.

The ordering function used to order the elements of a
generic structure (index, tree), can be defined by overloading
the O>lV function for the access object, to create a function
comparing the designated objects values (for a string access
type, the lV>I1 would compare the designated strings).

The compare function VI=11 is another matter, however. It
exists for access types, but compares the values of the access
objects to see if they designate the same designated object.
The)l=II can only be overloaded if the abstract access type is
declared as limited private instead of private. When this is
done, however, the assignment operation is lost (and cannot
be overloaded), which is needed for internally manipulating the
generic structure inside the generic package.

Embedding the access type in a non-discriminant record
would not change the reference nature of the contained object,
and the problem of compares.

Embedding discriminant types, however, is very successful.
AS long as the constraint is not needed for data validity, this
technique can hide the discriminant type within a non-
discriminant record. The non-discriminant record will match a
generic formal parameter of type private. This allows, for

E.1.1.6

- -
instance, a variable string (unconstrained array type), to be
contained within a non-discriminant record, and passed to
generic procedures easily.

DESIGN GOALS AND CONSTRAINTS FOR ATOMIC ABSTRACTION

In the process of feasibility prototyping for the
generation of application independent software support
environments, the following design goals and constraints were
found to yield, for packages supporting atomic abstract types,
the maximum in abstraction, flexibility, and potential for
generic

1.

2 .

3 .

4 .

5 .

6 .

structure incorporation:

Package-def ined atomic objects being declared in the
application software should, where possible, be
defined as abstract types, that is, made private.

If the operations of an object are analogous to those
of standard objects already in the system, overload
the same names for the operations. This enhances
readability and learnability of the application
software support environment. Do not, however,
overload names with non-analogous functions.

The functions performed by the operations of an
object should be intuitive. The action
performed by an operation should be predictable from
the context of the application software.

The outcome or result of operations of an object
should be intuitive. The kind of object produced by
operators, for example, should be predictable from
the context of the application software.

Maximize the completeness of the application interface
to the atomic type defined in the package. Give the
application developer all of the operations required
to manipulate and combine objects, in an easy-to-use
yet well controlled manner.

Maximize the potential use of reusable software
incorporating the abstract atomic type into
generically structured types. This can be accomplished
by defining types that perform simply under the
operations of assignment and comparison (not
discriminant types or access types, which follow a
more complex model).

DESIGN GOALS AND CONSTRAINTS FOR GENERIC ABSTRACTION

In the process of feasibility prototyping for the
generation of application independent software support
environments, the following design goals and constraints were

E.1.1.7

found to vield the maximum in reusability and flexibility for
packages

1.

2 .

3 .

4 .

5 .

6 .

7 .

ianaging generically structured abstract types :
-

Package-managed generic objects that are declared in
the application software should, where possible, be
defined as abstract types, that is, made private.

Maximize the generality of the package. This comes
from the use of formal generic parameters,
particularly for types, that match the widest variety
of application input types (type private instead of
digits -3, for example).

Maximize the usability of the application interface to
the package. Extend, as far as possible into the
application domain, access to the structures managed
in the package, without violating the integrity of the
internals, or the independence of the application
from the generic software component (generality).

Maximize the completeness of the application interface
to the package. Give the application developer all the
operations required to access and manipulate the
internal structures, in a package-controlled manner.

Support, if possible, multiple objects with the same
package. This limits the need to re-instantiate the
package several times within the same scope, for
processing of multiple objects.

Design for flexibility: a single tool, suited to a
wide range of applications, is more likely to be
remembered, and used by developers.

Cover the infrequent failure modes. Most failures of
algorithms and processing logic in programs occur at
the extremes of their domain of applicability.
Testing should cover the ends of ranges and the
infrequent states of the application. If the software
component is reusable, it will be used in a wider
range of applications, and the infrequent failure
modes will occur more frequently.

PACKAGES SUPPORTING GENERICALLY STRUCTURED ABSTRACT TYPES

The index package, described as a list of elements ordered
by another set of associated elements or keys, will be used as
an example for a package supporting a generically structured
abstract type. The index structure itself should be a private
type. It should be defined in the package specification, not
hidden, so that it can be declared as an object in the scope of
the application. The package should be capable of accessing and
managing several objects of type INDEX, so there should be a
USE-INDEX function, which selects the appropriate object, and

E.1.1.8

sets a package-internal access object to the same value as that
passed as the USE-INDEX parameter. Then there will be two
access objects pointing to the index structure internals, one in
the application scope, one in the package scope.

Since the access object in the application scope cannot be
changed, neither can the access object in the package scope
(unless there is a subsequent USE-INDEX call). They must stay
aligned. This means that the INDEX access object cannot
designate the head of the index-list, but must instead designate
an access object that designates the head of the index-list.
This is in case an insert must be made at the head of the index,
and the access object that designates it must be modified.

The importance of having the index object in the scope of
the application is in the flexibility of use of the object at
the application level. The developer should be capable of
passing the object as a parameter to subprograms developed at
the higher level. If the object of type INDEX is hidden, this
flexibility is not there.

The indication of success or failure of an operation
(add/delete, search, etc.) should be available for the
application, for the purpose of logical tests and conditional
branching. It should be contained in the package scope, visible
in the package specification, and it can be called STATUS.
Values contained in status can be defined in the package

FOUND, etc.) . specification to show conditions (END-OF-LIST, ELEMENT-NOT,

CURRENT-NODE POINTER FACILITY

One question about package operations that must be answered
before the design phase is about the context-sensitivity of
operations. Higher level operations, like those involved in
command languages, are typically constrained to be context
insensitive, on a line-by-line basis. This means that the
interpreter of the command or function requires no information,
other than that in the command, to interpret it completely.
There is no contextual bas i s .

This can be effectively at a high level of application, but
is difficult for the implementation of any complex
functionality. For the package managing a complex structure, it
is really necessary for the package to keep a contextual
indication of the current position of the search through the
structure in between calls. A USE-INDEX call to a new index
would reset this position indicator, of course, as would any
search, add/delete, or sequential positioning call. This
prevents the need for a node search upon every call. This
position indication variable can be called CURRENT.

CURRENT is of necessity an access object. If CURRENT is
kept in the application scope, it must be passed in the
subprogram interfaces of every operation. Also, being in the
application scope, synchrony can be lost between USE-INDEX calls
(pointing to the wrong INDEX designated structure).

If CURRENT is kept in the package, the package can track
application context, and reset CURRENT upon USE-INDEX

E.1.1.9

invocation. Also, it should be hidden, because it would be
difficult for the application to interpret it anyway.

With these design issues decided, a generic package for
managing INDEX objects can be developed.

REUSABILITY ISSUES

Reusability is generally discussed in terms of taking
software written at other sites, and not necessarily on the same
machine, and porting it for use in an application. There is a
context here, which can be called inter-project reusability.
This kind of reusability is based on two types of software
development.

In the first type of reusable software, software components
or interfaces to non-Ada components are produced for general
application support areas, like DEMS, user interface software,
graphics, communications, data reduction and others, even AI.
These will certainly be necessary to include, as they are more
expensive to develop than to buy. They will also be the most
commercially available.

In the second type of reusable software, and with far less
availability, software components are written targetting the
application area of interest. These will probably be less of a
fit to the specific application, with fewer packages to choose
from .

In the I & T area, high performance software is hard to
obtain, and will be in the future. This is due to the narrow
market and the very high degree of system dependence of the
applications developed. In application domains with parameters
like those of I & T, the major gains in Ada reusability will be
those derived from software designed and developed in the same
project .

This kind of reusability can be called intra-project
reusability, and comes from design by abstraction. High level
software can be produced for specific application domains by the
production of packages tailored to support those
domains.

Packages implementing private types can be developed that
support the objects and operations representing the phenomena
which are the subject of system development. If these objects
and operations simulate the behavior of those phenomena well
(within the purposeful domain), then the applications developed
using them will be higher level, and generally more effective
and maintainable.

Generic packages can also be developed supporting the
static and dynamic relationships between objects in the system.
If these packages can be made flexible and with maximum
reusability, then the objects of the system can be organized
by instantiation of those packages, allowing the system
relationships to be established on a high order level in a
logical way.

The reuse of both sets of software can be enhanced by
establishing design constraints on each, so that the software
components of the system can be assembled with maximum

E. 1.1.10

likelihood. The design goals and constraints on Ada software can
not be effectively left as an afterthought.

PROJECT-SPECIFIC SOFTWARE SUPPORT ENVIRONMENTS

The effectiveness and reusability of software generated by
relatively inexperienced Ada programmers will be directly
related to the project-specific software environment that
exists when they first enter the project. It will always be
found that it is easier, quicker and more reliable to construct
anything from pre-fabricated components that fit together as
well as Leg0 blocks do. Two things are required to build a good
set of blocks.

First, the objects (the logical atoms and molecules of the
system) and their operations must be represented well by
packages supporting those atomic abstract types and all of their
support functions. Secondly, the relations organizing the
objects of the system must be supported with generic packages
that are flexible and easy to use.

In the internals of both of these packages can be buried
the hidden complexity of the system, and some of the system
dependencies as well. In this way, technology insertion into the
system can be accomplished directly, without negatively
affecting the applications of the system. [2]

Finally, a good set of blocks is not sufficient to build a
system. The builder has to know what he is building to be
effective. There is no substitute for Requirements Analysis and
Functional Decomposition using data flows and similar techniques
to express what a system does in a manner traceable back to the
original User Requirements. The development of Ada and
the object-oriented design methodologies which Ada directly
supports will eventually prove, however, to be a large step on
the way to cracking the problem of what to do after the System
Requirements are assigned to the top-level components of the
system.

ACKNOWLEDGEMENT

I gratefully acknowledge the support given by the Kennedy
Space Center/ Engineering Development/ Systems Integration
Branch in supplying the computer facilities for the feasibility
studies that provided the basis of this work. I also thank my
wife, Bronwen Chandler, for her support.

REFERENCES

1. Johnson, C., 1986. "Some Design Constraints Required for
the Assembly of Software Components: The Incorporation of
Atomic Abstract Types into Generically Structured Abstract
Types", Proceedings of the First International Conference
On Ada* Programming Language Applications For The NASA
Space Station, F.4.4.

E. 1.1.11

2. Johnson, C., 1986. IISome Design Constraints Required for
the Assembly of Software Components: The Incorporation of
Atomic Abstract Types into Generically Structured Abstract
Typesv1, Proceedings of the First International Conference
On Ada* Programming Language Applications For The NASA
Space Station, B . 4 . 3 .

E. 1.1.12

